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detail why the symplectic property is so important for
planar Hamiltonian systems. The question is whether thisThe phase space of sine–Gordon possesses tori and homoclinic

structures. It is important to determine how these structures are superior behavior carries over to high-dimensional sys-
preserved by numerical schemes. In this, the second of two papers tems, as our earlier experiments with symplectic inte-
on the numerical solution of the sine–Gordon equation, we use the grators of the sine–Gordon equation might indicate. In
nonlinear spectrum as a basis for comparing the effectiveness of

this paper we set out to answer this question.symplectic and nonsymplectic integrators in capturing infinite di-
In order to determine the effectiveness of symplecticmensional phase space dynamics. In particular, we examine how the

preservation of the nonlinear spectrum (i.e., the integrable structure) integrators, it is very useful to have a simple description
depends on the order of the accuracy and the symplectic property of the geometry of phase space which can be used to deter-
of the numerical scheme. Q 1997 Academic Press mine how well the numerical schemes preserve the phase

space structure. Fortunately, such a description based upon
the spectrum of the associated linear eigenvalue problem1. INTRODUCTION
is developed in [7]. In this description, the geometry of
phase space is represented by the discrete eigenvalues ofIn a previous study of the sine–Gordon equation,
an associated eigenvalue problem. In particular, sensitive
regions are described by the ‘‘unstable’’ double points in(1)utt 2 uxx 1 sin u 5 0
the spectrum. The spectrum is not only useful to under-
stand the nature of the instabilities observed in many nu-with periodic boundary conditions, u(x, t) 5 u(x 1 L, t),
merical discretizations of the sine–Gordon equation, it alsowe investigated how the presence of homoclinic structures
provides a description of the qualitative properties of theaffects numerical solutions of the sine–Gordon equation.
numerical schemes themselves. In fact, the spectrum en-We concentrated our efforts on the doubly discrete, com-
ables one to define the qualitative properties of the numeri-pletely integrable discretization due to Hirota. Since it
cal schemes and it provides a quantitative measure of theseshares many of the essential properties of the sine-Gordon
properties. Thus we are in a position to compare the quali-equation, including integrability, it seems reasonable to
tative properties of different numerical schemes in a quan-expect that it should be eminently suitable as a numerical
titative way. We are particularly interested in a comparisonscheme. One certainly does not expect it to become un-
between symplectic and nonsymplectic schemes for high,stable. Yet, this is exactly what happens if initial values
but finite, dimensional Hamiltonian systems.are chosen in certain regions of phase space [3].

In particular, in this paper we address the followingOn the other hand, in [10] we observed that a first order
questions:symplectic scheme remains well-behaved using the same

initial values. Higher order symplectic schemes did become • Do symplectic integrators preserve the structure of the
unstable, but still appeared to be better behaved than non- sine–Gordon phase space appreciably better than nonsym-
symplectic schemes. This may be a significant observa- plectic methods? More specifically, do trajectories explore
tion—since symplectic schemes are designed to preserve a smaller region of phase space when symplectic methods
the geometric properties of Hamiltonian systems exactly— are used?
one has reason to expect that they should perform qualita-

• Does the relative performance of symplectic inte-tively better than nonsymplectic schemes. This is the case
grators improve if one chooses initial values away fromin low dimensional systems and in Section 1 we explain in
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the unstable homoclinic manifolds? If very long time inte- erty means that the system is integrable and the second is
a fundamental geometric property of planar Hamiltoniangrations are considered?
systems—it holds only for Hamiltonian systems; see, e.g.,• How important is the order of accuracy of the numeri-
[5]. It is our purpose to discretize (2), retaining as muchcal scheme in the preservation of the qualitative properties
of these two properties as possible.of the phase space?

It turns out that consistent discretizations in general are
It is important to note the following: not able to preserve both the area as well as the Hamilto-

nian. Since area preservation (in particular its higher di-
• We compare the qualitative properties of several sym-

mensional analogue) is the more fundamental of the twoplectic schemes and nonsymplectic schemes of the same
properties, much effort has gone onto the construction oforder. For example, we have not attempted to optimize
the so-called symplectic discretizations. Here symplecticthe nonsymplectic schemes by adjusting the order or the
simply means a consistent, area preserving discretizationstime step. This could lead to major improvements of the
of (2); see, e.g., [17] for a comprehensive overview.nonsymplectic Runge–Kutta schemes that we use. Inciden-

It is quite straightforward to verify that a map is areatally, symplectic schemes do not benefit in general from
preserving in practice. Letadjusting the time step, see Sanz-Serna and Calvo [17].

• We obtain the finite dimensional Hamiltonian system
(3)(P, Q) 5 f(p, q)from a finite difference and Fourier spectral spatial discreti-

zation of the sine–Gordon equation. The resulting Hamil-
define a smooth transformation in some domain V. Ac-tonian systems turn out to be separable—a situation that
cording to the standard rules for changing variables in anis particularly advantageous for symplectic schemes since
integral, this transformation preserves area if and only ifseparability allows the construction of explicit symplectic
its Jacobian is identically one, i.e.,schemes.

It should be clear that we have chosen circumstances that
are particularly favorable towards the use of symplectic ­P

­p
­Q
­q

2
­P
­q

­Q
­p

5 1 ;(p, q) [ V. (4)
schemes. The symplectic schemes are implemented in a
particularly efficient manner and they are compared with
far from optimal nonsymplectic schemes. Even so, we find Let us now simplify even more and assume that the Hamil-
very little difference in the performance of the symplectic tonian is separable; i.e., one can write H(p, q) 5 T(p) 1
and nonsymplectic schemes. Unlike the situation for planar V(q). The following is a first-order discretization of (2),
systems, the ability of the numerical schemes to preserve
the phase space structure of high-dimensional Hamiltonian

pn11 5 pn 2 kV9(qn)
(5)systems appears to depend more upon the accuracy of the

scheme rather than the property of symplecticness. qn11 5 qn 1 kT9(pn11),
Although we have by no means tested all available sym-

plectic schemes, we believe that our results do reflect the where a prime denotes a derivative with respect to the
importance, or lack thereof, of the preservation of symplec- argument and k is the time step. To check that the transfor-
ticness in the integration of the high-dimensional Hamilto- mation (pn , qn) R (pn11 , qn11) is symplectic, one simply
nian systems which result from the semidiscretization of checks that its Jacobian equals one. Also note that it is
the infinite dimensional systems of soliton theory. explicit, which is a consequence of the separability of the

Hamiltonian. Although (5) is only first order there are
2. PLANAR HAMILTONIAN SYSTEMS several procedures to construct higher order symplectic

schemes. Still assuming that the Hamiltonian is separable,
Using the coordinates (p, q), two-dimensional Hamilto- a general form of higher order schemes may be given by,

nian systems can be written as e.g., [19],

pi11 5 pi 2 CikV9(qi)
(6)

dp
dt

5 2
­H
­q

,
dq
dt

5
­H
­p

, (2)

qi11 5 qi 1 DikT9(pi11),

where the Hamiltonian H is well-behaved, typically an
analytical function of p, q. The system (2) has two im- where i 5 1, ..., m and the coefficients Ci and Di are

determined in order for the scheme to be symplectic andportant properties: The Hamiltonian is a constant of mo-
tion and the phase flow preserves area. The former prop- of O(km). Here p1 and q1 are the numerical approximation
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at the time t and pm11 and qm11 are the approximations at which can be written as the Hamiltonian system,
the next time level, t 1 k. For example, the first-order
scheme (5) is given by m 5 1 and q9 5 p

(8)
p9 5 2sin q,

C1 5 1, D1 5 1.
with the Hamiltonian function given by

Similarly a second-order scheme is given by m 5 2 and (9)H(q, p) 5 Asp2 2 cos q.

It is straightforward to establish that there is a homo-
C1 5 0, C2 5 1, D1 5 As 5 D2 . clinic orbit to the fixed point at (p, q) 5 (0, f) given by

Asp2 2 cos q 5 1,Note that the schemes defined by (6) are explicit since the
Hamiltonian is separable. We should also point out that

or explicitly written asthis is only one way of constructing higher order symplectic
discretizations and the one used in this study; for an expla-

(10)q(t) 5 f 1 4 arctan[exp(t 1 c)].nation of other possibilities the reader is referred to [17].
As alluded to above, symplectic discretizations lose the

Note that the phase space is a cylinder; i.e., we identifyintegrability of the continuous planar Hamiltonian sys-
the lines (p, 2f) and (p, f) in the phase plane (p, q)tems. Moreover, a simple geometric argument shows that
as usual.symplectic schemes, in general, are chaotic, regardless of

Figure 1a shows the situation if the pendulum equationthe size of the time step k or the order of the discretization
is solved using the first-order symplectic scheme (5) with(see [12] for a more detailed discussion). In this sense
a time step k 5 0.2. Apparently all is well; no abnormalsymplectic discretizations of planar Hamiltonian systems
behavior is observed. However, if a small region about thetend to be nonlinearly unconditionally unstable. But what
fixed point at the origin is magnified as in Fig. 1b (notedoes this mean in practice, is it important numerically?
the change in scale from Fig. 1a), the situation changesAs an example, let us consider the pendulum equation,
considerably. Now the familiar KAM features—chaotic
regions, resonant islands, and invariant curves—become
visible. These features depend only on the area preserving(7)q0 1 sin q 5 0,

FIG. 1. The solution of the pendulum equation; (b) is a closeup view of (a).
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TABLE Iproperty of the discretization; for example, the situation
does not improve if one uses a higher order symplectic Decay-Rate Obtained from Varying k
discretization. Even so, the situation is not nearly as bad

Integrator aas it might appear. Accordingly, we now proceed to mea-
sure the extent of the chaotic presence relative to the

SI 1 4.6discretization parameter.
SI 4 4.3

In the first series of experiments the distance to the first SI 8 4.4
invariant curve is measured, as one moves away from the
fixed point at f (homoclinic orbit).1 This splitting distance
D is measured as a function of k for first-, fourth-, and
eight-order symplectic schemes of the form (6), denoted situation is illustrated in Fig. 3 which was obtained by
by SI1, SI4, and SI8, respectively. The results are shown iterating a small section of the linear stable and unstable
in Fig. 2. manifolds at the origin backwards and forwards, respec-

The graphs indicate an exponential decay of the chaotic tively. We measure the area of one of the small lobes
region around the separatrix, as a function of k. Thus, enclosed between the stable and unstable manifolds. Note
assuming that the splitting distance D depends on the time that all the lobes have the same area—symplectic inte-
step k as grators are, after all, designed to preserve area. Without

going into any details (but see [12]), we note that the lobe
area is easily calculated if two consecutive intersection

D Y exp(2a/k), points are known, by invoking the Mackay–Meiss–Percival
action principle.

Measuring the lobe area as a function of the time step
one can measure a for the different experiments shown in k for the first-order symplectic scheme (5), the results are
Fig. 2. The results are given in Table I. shown in Fig. 4.

Table I shows that the rate of decay does not depend on Again assuming a relationship between the lobe area A
the order of the discretization. In fact, this can be justified and the time step of the form
analytically in a nonrigorous manner using Mel’nikov’s
method (see [12]); more rigorous arguments have been A Y exp(2a/k),
given by [16, 14, 15], among others.

In the second set of experiments we measure the lobe the average value of a is given by 8.95. It is no accident
area, A, between the stable and unstable manifolds. The that this value turns out to be about twice as big as the

value for Fig. 2. In fact, from theoretical considerations
(see [12]), we expect a 5 f2/2 in the case of Fig. 4 and
a 5 f2 in the case of Fig. 2.

In summary, for planar Hamiltonian systems, symplectic

FIG. 2. Exponential decay of the chaotic region as k is decreased,
for SI1, SI4, and SI8.

FIG. 3. Homoclinic tangles in the numerical solution of Duffing’s1 This corresponds to what is usually referred to in dynamical systems
as the last invariant curve. equation obtained from the first-order SI.
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and where q :5 u and p :5 ut are the conjugate variables
and d denotes the variational derivative.

The Poisson bracket of any two functionals F and G is
defined to be

hF, Gj 5 EL

0
FdF

dq
dG
dp

2
dF
dp

dG
dqG dx, (13)

and the evolution of any functional F under the sine–
Gordon flow is governed by

dF
dt

5 hF, Hj. (14)
FIG. 4. Exponential decay in the size of the area enclosed between

the stable and unstable manifolds, as a function of k.

Obviously, the Hamiltonian H is conserved by the sine–
Gordon flow. Moreover, the sine–Gordon equation is a

integrators have the remarkable property that they pre- completely integrable system as there exists an infinite
serve the integrability of the continuous system with expo- family of conserved functionals in involution with respect
nential accuracy. More detailed theoretical investigations to the Poisson bracket (13). This allows the sine–Gordon
show that this is a direct consequence of the area preserving equation to be solved with the inverse scattering transform.
property of the symplectic schemes; it is not necessarily In general the integrability is lost by numerical discretiz-
shared by nonsymplectic schemes. Moreover, all symplectic ations (a notable exception is the double discrete, com-
schemes, regardless of their order, preserve the integrabil- pletely integrable discretization due to Hirota, discussed
ity with the similar accuracy. Thus there is no need to use in more detail in [3]). In the case of infinite-dimensional
anything higher than a first-order scheme if one is only problems, this may have severe adverse effects on the
interested in preserving the integrability of the planar sys- quality of the numerical solutions, in particular in the vicin-
tem. However, there is seldom any serious interest in solv- ity of sensitive structures such as homoclinic orbits. How-
ing planar Hamiltonian systems numerically. Evidence that ever, it is not obvious how to determine the proximity to
the situation may not be quite as straightforward for higher homoclinic manifolds from the global constants of motion;
dimensional systems is already provided by Sanz-Serna another representation is called for. We now proceed to
and Calvo [17]. They find that different symplectic schemes show how the geometric structure of the infinite-dimen-
may behave very differently which is a clear indication that sional phase space may be described in terms of the Floquet
it is not only the symplectic property that is important as discriminant. More specifically, it implicitly defines the
we find in the case of planar systems. In order to find homoclinic orbits and allows one to measure the width of
out how well symplectic schemes preserve the qualitative the chaotic layer which appears about the homoclinic orbits
properties of higher dimensional systems, we turn to the when the system is perturbed.
infinite dimensional sine–Gordon equation.

First we shall briefly mention a few of the special proper- 3.1. Spectral Theory
ties of the sine–Gordon equation.

The phase space of the sine–Gordon equation with peri-
odic boundary conditions can be described in terms of the3. INTEGRABLE STRUCTURE OF THE
spectrum of the linear operator (the spatial part of theSINE–GORDON EQUATION
associated Lax pair; for a detailed description see [7])

The sine–Gordon equation can be viewed as an infinite
dimensional Hamiltonian system,

L(u, l) 5 FA
d

dx
1

i
4

B(ux 1 ut) 1
1

16l
C 2 lIG, (15)

qt 5
dH
dp

, pt 5 2
dH
dq

(11)

where
with

A 5 S0 21

1 0
D, B 5 S0 1

1 0
D (16)H(p, q) 5 EL

0
[Asp2 1 As(qx)2 1 1 2 cos q] dx (12)
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C 5 Sexp(iu) 0

0 exp(2iu)
D, I 5 S1 0

0 1
D, (17)

u :5 (u(x, t), ut(x, t)) is the potential and l [ C denotes
the spectral parameter.

The spectrum of L (x) is defined as

s(L ) :5 hl [ CuL (x)v 5 0, uv u bounded ;xj. (18)

FIG. 5. The surface u(x, t) of a homoclinic solution.
Since the potential u solves the sine–Gordon equation
and is of spatial period L, the spectrum is obtained using
Floquet theory. The fundamental matrix, M(x, x0 ; u, l),

values of these actions fix a particular level set. Let lof the spectral operator (15) is defined by
denote the spectrum associated with the potential u. The
level set defined by u is then given by

L(u, l)M 5 0, M(x0 , x0 ; u, l) 5 S1 0

0 1
D, (19)

M u ; hv [ F uD(v, l) 5 D(u, l), l [ Cj. (22)

and the Floquet discriminant D(u, l) :5 tr M(x0 1 L, x0 ; Typically, Mu an infinite dimensional stable torus. How-
u, l). The spectrum of L(u, l) is given by the following ever, the sine–Gordon phase space also contains degen-
condition on D: erate tori which may be unstable. If a torus is unstable,

its invariant level set consists of the torus and an orbit
s(L (x)) :5 hl [ CuD(u, l) is real and 22 # D(u, l) # 2j. homoclinic to the torus. These invariant level sets, con-

sisting of an unstable component, are represented in gen-(20)
eral by complex double points in the spectrum. A complete
and detailed description of the sine–Gordon phase spaceThe discriminant is analytic in both its arguments. More-
structure is provided in [7]; we illustrate the main ideas byover, for a fixed l, D is invariant along solutions of the
means of a simple example.sine–Gordon equation:

Consider the solution, u(x, t) 5 (f, 0). This solution is
modulationally unstable: assuming that u(x, t) 5 f 1
«(x, t), u«(x, t)u ! 1, with «(x, t) 5 «̂n(t) exp(ienx) 1d

dt
D(u(t), l) 5 0. (21)

«̂*n (t) exp (2ienx), en 5 2fn/L, n an arbitrary integer, it
follows that

Since D is invariant and the functionals D(u, l), D(u, l9)
are pairwise in involution, D provides an infinite number d 2

dt2 «̂n 1 g2
n«̂n 5 0 (23)of commuting invariants for the sine–Gordon equation.

When discussing the numerical experiments, we monitor
the following elements of the spectrum which determine

(and similarly for «̂*n (t)), where g2
n 5 e2

n 2 1. The nththe nonlinear mode content of solutions of sine–Gordon
mode grows exponentially, if 0 # e2

n , 1. For this solu-equation and the dynamical stability of these modes:
tion, the Floquet discriminant is given by L(u, l) 5

(i) Simple periodic/antiperiodic spectrum 2 cos(l 1 1/16l)L and the spectrum by s(L ) 5 R <
(ulu2 5 aQh). The periodic spectrum is located at lj 5
As[jf/L 6 Ïj 2f2/L2 2 Af], j integer. Each of these points iss s 5 hls

j uD(l, u) 5 62, dD/dl ? 0j.
a double point embedded in the continuous spectrum and
becomes complex if 0 # (2fj/L)2 , 1. Note that the condi-(ii) Double points of the periodic/antiperiodic spectrum
tion for complex double points is exactly the same as the
condition for unstable modes.

s d 5 hl d
j uD(l, u) 5 62, dD/dl 5 0, d 2D/dl2 ? 0j. The initial data used in the numerical experiments are

small perturbations of u(x, t) 5 (f, 0). We begin by consid-
The periodic/antiperiodic or main spectrum provides the ering the case of two unstable modes. Figures 5 and 6 show

actions in an action-angle description of the system. The three possible nearby states. Figure 5 is obtained using the
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FIG. 6. (a) Outside the homoclinic orbit. (b) Inside the homoclinic orbit.

initial value, the waveforms shown in Figs. 6a, b, respectively, show
how the complex double point at 458 has split into two

u(x, 0) 5 f 1 0.1 cos(ex) simple points; it has opened either into a ‘‘gap’’ in the
spectrum (Fig. 7b) or has formed a ‘‘cross state’’ in

ut(x, 0) 5 0.1Ï1 2 e2 cos(ex),
the spectrum (Fig. 7c). These results were obtained
analytically in [3] with a perturbation analysis.

where L 5 2Ï2f and e 5 2f/L. It shows a solution homo-
Since the sine–Gordon equation is completely inte-

clinic to u0(x, t) 5 f. Figures 6a, b show solutions obtained
grable, the main spectrum is invariant under the exact

using the initial values,
sine–Gordon flow. However, integrability is in general
not preserved by numerical discretizations of the sine–

u(x, 0) 5 f 1 0.1Ï1 2 e2 cos(ex)
Gordon equation and one finds that the main spectrum
is not time-invariant under numerical flows. Said differ-ut(x, 0) 5 (0.1 6 0.01)Ï1 2 e2 cos(ex).
ently, the actions tend to drift under numerical flows.
We are interested in the extent of this drift—the smallerDespite a small difference in the initial values, the
the drift, the better the geometric structure of phasesubsequent behavior is quite different—the period shown
space is preserved. To answer the questions posed inin Fig. 6a is about twice that of Fig. 6b. We refer to
the introduction regarding the effectiveness of symplecticthese solutions as being ‘‘outside’’ and ‘‘inside’’ the
integrators, in the numerical experiments we monitorhomoclinic orbit, respectively. These differences are also
the evolution of the main spectrum under the differentreflected in the associated nonlinear spectrum and is
numerical flows. This will provide a quantitative measureshown in Fig. 7. Figure 7a corresponds to the homoclinic
of the qualitative properties of symplectic and nonsym-orbit of Fig. 5 and shows that both eigenvalues are double.
plectic discretizations of sine–Gordon.Figures 7b, c, which are the spectral representations of

FIG. 7. The nonlinear spectrum: (a) Homoclinic orbit; (b) Inside the homoclinic orbit (‘‘gap state’’); (c) Outside the homoclinic orbit (‘‘cross state’’).
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4. NUMERICAL SCHEMES or more conveniently as

The first thing we need to do in this section is to show dz
dt

5 J 21gradH(z), (29)how a finite-dimensional Hamiltonian system is obtained
from the infinite-dimensional sine–Gordon system. The
basic idea is to discretize the continuous Hamiltonian sys- where z :5 (p, q)T and J is the so-called symplectic matrix,
tem (12). For example, if (12) is replaced by the following
discrete analogue,

J :5 S0n In

2In 0n
D (30)

H 5 ON21

j50
FAsf

.
2
j 1

1
2h2 (fj11 2 fj)2 1 1 2 cos fjG,

with 0n and In denoting the zero and unit matrices of
dimension n, respectively.fj1N 5 fj , (24)

Again, as in the planar case discussed in Section 2, we
need to construct discretizations of (28) preserving its es-then Hamilton’s equations,
sential Hamiltonian nature. In the planar case, symplectic
simply meant area preserving. The higher dimensional ana-

f̈j 5 2
­H
­fj

, f
.

j 5
­H

­f
.

j

, logue is a little more complicated. If we denote the transfor-
mation from one time step to the next by f (cf. (3)), the
appropriate quantity to preserve for higher dimensional

lead to the standard second-order finite difference scheme, systems is given by

(31)f9TJf9 5 J ;(p, q) [ V,f̈j 2
1
h2 (fj21 2 2fj 1 fj11) 1 sin fj 5 0. (25)

where f9 is the Jacobian matrix of the transformation and
However, if the continuous Hamiltonian (12) is re- J is the (2 3 2)-dimensional symplectic matrix defined by

placed by (30). Again several procedures for constructing discretiz-
ations with exactly these properties have been developed.
As in the planar case, one can ensure that the scheme is

H 5 As O(1/2)N21

n52N/2
[uA

.
nu2 1 e2

nuAnu2] 2
1
N O(1/2)N21

j52N/2
cos fj (26) explicit if the Hamiltonian is separable, i.e., if

H(p, q) 5 T(p) 1 V(q).the exponentially accurate (for analytic solutions) Fourier
pseudospectral scheme,

Since the continuous Hamiltonian of the sine–Gordon
equation is separable, its discretizations may inherit thisÄn 1 e2

nAn 1 Fnhsin fj 5 0, (27)
property as demonstrated by (24) and (26), allowing for
very efficient explicit implementations of the symplectic

is obtained, where schemes.
In the next section we compare the higher dimensional

counterparts of the first-, second-, and fourth-order sym-An 5 Fnhfj :5
1
N O(1/2)N21

j52N/2
fj exp(22finj/N)

plectic discretizations defined by (6) with The Runge–
Kutta methods of the same orders of accuracy.

and
5. NUMERICAL EXPERIMENTS

For the numerical experiments in the unstable regime,fj 5 F21
n hAj :5 O(1/2)N21

n52N/2
An exp(2finj/N).

the initial data is used,

Thus, by discretizing the spatial variable, one reduces (32)u(x, 0) 5 f 1 0.1 cos(ex), ut(x, 0) 5 0,
the infinite-dimensional sine–Gordon system to a finite-
dimensional Hamiltonian system written in the form with parameters e 5 2f/L and L 5 2Ï2f. This initial data

is in the ‘‘effectively’’ chaotic regime as the zeroth double
point remains closed; i.e., the initial data is on the level setdpi

dt
5 2

­H
­qi

,
dqi

dt
5

­H
­pi

, i 5 1, ..., N, (28)
containing the homoclinic manifold. Closed double points
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FIG. 8. fd1sy: u(x, 0) 5 f 1 0.1 cos ex, ut(x, 0) 5 0, N 5 64, t 5 0 2 500.

cannot be preserved by the numerical schemes and in the modes execute a few homoclinic crossings before drifting
into cross and gap states, respectively, indicating that thefollowing experiments one observes that the zeroth mode is

immediately split into a gap state by the numerical scheme. solution has collapsed onto a nearby (stable) periodic orbit.
The spectral deviations have diminished in magnitude toTo interpret the evolution of spectrum plots, recall that

under perturbations the complex double points can split the order of 2 3 1022. Using the fourth-order integrators,
FD4RK (Fig. 11) and FD4SY (Fig. 12), the zeroth modein two ways—either into a gap along an arc of the circle,

or into a cross along the radius (cf. Fig. 7). For each set does not execute any homoclinic crossings and immediately
collapses into a gap state. No further improvement in theof experiments, we show a signed measure of the splitting

distance for each complex double point as a function of preservation of the spectrum is detected since, for these
schemes, the perturbation due to the spatial truncationtime. Positive and negative values represent gap and cross

states, respectively. Homoclinic crossings occur when the dominates that of the temporal truncation. In the finite
difference experiments, large deviations in the spectrumsplitting distance passes through zero.

We begin by examining the finite difference scheme (25) occur, regardless of whether the integrator is symplectic
or not. The finite-difference scheme performs quite poorly;implemented with Runge–Kutta (second and fourth order)

and symplectic (first, second, and fourth order) integrators. it does not preserve either component of the spectral con-
figuration. More importantly, there is no substantial differ-These schemes are denoted FD2RK, FD4RK and FD1SY,

FD2SY, FD4SY, respectively. We use N 5 64 and a fixed ence in the performance of the Runge–Kutta and symplec-
tic integrators.time step Dt 5 L/512 in the finite difference experiments.

The evolution of the spectrum associated with the first One might argue that the similarities between the sym-
plectic and nonsymplectic schemes are due to an inade-two nonlinear modes under the FD1SY, FD2RK, FD2SY,

FD4RK, FD4SY flows are given in Figs. 8–12. Note that quate spatial resolution provided by the finite difference
spatial discretization. Accordingly, we now consider thewe measure the nonlinear spectrum throughout with an

accuracy of about 1026. exponentially accurate Fourier pseudospectral method
(27) implemented with Runge–Kutta (second and fourthFor FD1SY, a chaotic flipping between gap and cross

states for both the zeroth and first modes is observed order) and symplectic (first, second, and fourth order) in-
tegrators. These schemes are denoted by PS2RK, PS4RK(Fig. 8) and the magnitude of the spectral deviation is of

the order of 4 3 1022. Using second-order time integrators, and PS1SY, PS2SY, PS4SY, respectively. In the pseudo-
spectral experiments we use N 5 32 Fourier modes and aFD2RK (Fig. 9) and FD2SY (Fig. 10), the zeroth and first

FIG. 9. fd2rk: u(x, 0) 5 f 1 0.1 cos ex, ut(x, 0) 5 0, N 5 64, t 5 0 2 500.
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FIG. 10. fd2sy: u(x, 0) 5 f 1 0.1 cos ex, ut(x, 0) 5 0, N 5 64, t 5 0 2 500.

FIG. 11. fd4rk: u(x, 0) 5 f 1 0.1 cos ex, ut(x, 0) 5 0, N 5 64, t 5 0 2 500.

fixed time step, Dt 5 L/512. For initial data (17), the devia- highlights the fact that symplecticness is not enough to
preserve the phase space geometry.tions in the spectrum corresponding to the first two non-

linear modes under the PSISY, PS2RK, PS2SY, PS4RK, The pseudospectral method does provide substantial im-
provement over the finite difference discretization. UsingPS4SY flows are given in Figs. 13–17 for 0 # t # 500. This

method is exponentially accurate in space, which allows PS2RK (Fig. 14) and PS2SY (Fig. 15), the spectrum for
the first mode does not execute any homoclinic crossingsfor a very accurate initial approximation of the spectral

configuration. The evolution of the spectrum under the and so the torus component is much more accurately pre-
served than with the previous spatial discretizations. Thenumerical flow is primarily due to the time integrators.

The splitting distance for both modes obtained with zeroth mode still displays homoclinic crossings which occur
earlier than with the lower order PS1SY. Since the initialPS1SY (Fig. 13) is O(1022) (i.e., it is comparable to the

splitting distance obtained with FD1SY) and is larger than data is chosen on the homoclinic manifold, it is to be
expected that there will be an earlier onset and higherthat obtained with the Runge–Kutta schemes. This result

FIG. 12. fd4sy: u(x, 0) 5 f 1 0.1 cos ex, ut(x, 0) 5 0, N 5 64, t 5 0 2 500.
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FIG. 13. ps1sy: u(x, 0) 5 f 1 0.1 cos ex, ut(x, 0) 5 0, N 5 32, t 5 0 2 500.

density of homoclinic crossings when a more accurate chaotic width about the unstable torus is only slightly more
sharply defined with the symplectic integrator.scheme is used. Refinement can accentuate the frequency

of homoclinic crossings as the numerical trajectory is In long time studies of low-dimensional Hamiltonian
systems, symplectic integrators have been reported as su-trapped in a narrower band about the homoclinic manifold.

With PS2RK there is a O(1023) drift in the zeroth mode, perior in capturing global phase space structures since stan-
dard integrators may allow the actions to drift [17]. Tobut no strong growth. The drift is eliminated when using

PS4RK (Fig. 16). The spectral deviations are O(1024) for investigate this issue for sine–Gordon, we examine a time
slice 10,000 # t # 10,500. For PS4RK (Fig. 18) the devia-PS4RK and PS4SY (Fig. 17). Again, there is not an appre-

ciable difference between the Runge–Kutta and symplectic tions in the actions associated with the zeroth mode oscil-
lates about 1.2 3 1024, whereas for PS4SY (Fig. 19) itintegrators in their ability to preserve the integrable struc-

ture. An accurate representation of the global structures oscillates about 5 3 1025. However, the Runge–Kutta in-
tegrator can be made more efficient using variable timeappears to be more a function of accuracy than symplectic-

ness. In this effectively chaotic region of phase space, the steps. We apply the Runge–Kutta code, D02DDf, of the

FIG. 14. ps2rk: u(x, 0) 5 f 1 0.1 cos ex, ut(x, 0) 5 0, N 5 32, t 5 0 2 500.

FIG. 15. ps2sy: u(x, 0) 5 f 1 0.1 cos ex, ut(x, 0) 5 0, N 5 32, t 5 0 2 500.
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FIG. 16. ps4rk: u(x, 0) 5 f 1 0.1 cos ex, ut(x, 0) 5 0, N 5 32, t 5 0 2 500.

FIG. 17. ps4sy: u(x, 0) 5 f 1 0.1 cos ex, ut(x, 0) 5 0, N 5 32, t 5 0 2 500.

NAG library which is a fully adaptive time stepping which is a finite distance away from the homoclinic mani-
fold. Initially we are nearby a solution (u 5 f) with threemethod, to the pseudospectral method (PSNAG). PSNAG

(Fig. 20) does provide an improvement as it oscillates about unstable modes—however, all the double points have been
split into gaps of magnitude 1022 by the initial values and5 3 1025. The chaotic width (amplitude of the splitting

distance) obtained with the fixed time step has been dimin- we refer to this as the stable case. In order to obtain
homoclinic crossings, the perturbations in the l need toished with this adaptive method. Consequently, for the

long timescale regime, the slight advantage obtained with be more than 1022. Therefore, provided the numerical
schemes are sufficiently accurate, no homoclinic crossingsPS4SY has been eliminated using variable time steps.

To determine if an improvement in the performance are expected. Although the results are not presented here,
we note that our studies in this regime confirm our previousof symplectic integrators occurs when dealing with stable

structures, we have used the initial data observations: the first order symplectic scheme executes
deviations large enough for homoclinic crossings to occur.
A comparison of the second- and fourth-order symplecticu0 5 3.1 1 0.1(cos(ex) 1 cos(2ex)), L 5 4Ï2f, (33)

FIG. 18. ps4rk: u(x, 0) 5 f 1 0.1 cos ex, ut(x, 0) 5 0, N 5 32, t 5 10000 2 10500.
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FIG. 19. ps4sy: u(x, 0) 5 f 1 0.1 cos ex, ut(x, 0) 5 0, N 5 32, t 5 10000 2 10500.

FIG. 20. psnag: u(x, 0) 5 f 1 0.1 cos ex, ut(x, 0) 5 0, N 5 32, t 5 10000 2 10500.

and Runge–Kutta schemes shows that the symplectic In addition, the Runge–Kutta integrators we employ are
not state of the art. If a sophisticated variable time stepschemes capture most of the phase space structures of

interest, although not substantially more accurately than method is used, the very small improvement seen using
the symplectic method may be lost. Even for long timethe standard schemes which do not take into account the

Hamiltonian nature. In fact, a drift in the actions occurs integrations, where symplectic integrators perform better
in low dimensional problems because the standard schemeseven when using the symplectic integrators and is elimi-

nated using a smaller time step. sometimes permit a drift in the actions, no significant differ-
ence was detected, either in the stable or the unstable
regimes. Consequently, there does not appear to be a clear6. CONCLUSIONS
advantage in using symplectic integrators for numerical

In this investigation of numerical solutions of the sine– implementation of the sine–Gordon equation.
Gordon equation, the nonlinear spectral decomposition of Although we have been examining a specific integrable
the solution provides considerable insight into the behavior equation, we believe the results are extendable to other
of the various schemes. For the finite difference method, infinite-dimensional Hamiltonian systems (e.g., the non-
interesting lattice dynamics such as collapsing effects occur, linear Schrodinger equation) which share a similar phase
but as a numerical scheme it performs poorly. The pseudo- space structure.
spectral method with a high order integrator (regardless
of type) produced the smallest deviations in the actions and ACKNOWLEDGMENTS
best represented the qualitative properties of the equation.
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